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SCATTERING OF A BENDING WAVE BY A FINITE RECTILINEAR CRACK
IN AN ELASTIC PLATE*

I.V. ANDRONOV

The displacement field scattered by a rectilinear thin crack of finite
length in a plate vibrating in bending is investigated. The
boundary-value problem is reduced to integral equations on a segment by
methods analogous to those developed in /1/. These integral equations
are later replaced by the method of orthogonal polynomials, by infinite
algebraic systems solved by the method of reduction. These systems also
enable one to find the asymptotic form of the scattered field in the
case of a short crack. The asymptotic form of the radiation pattern of
a cylindrical wave diverging from the crack and the effective scattering
cross-section are constructed. The results are monitored by using an
optical theorem /2/.

1. Formulation of the problem and change to dimensionless quantities. The problem of
the scattering of an incident field §® (z,y) by a crack A ={|]z|<a,y =0} in a thin
infinitely extended plate consists of seeking the scattered field EW (z,y), that satisfies
the equation of bending vibrations

AW — k5D =0, (z,y) £ A (1.4)
so that the total field § ==E® -+ EB satisfies the boundary conditions
SAE= Lim (&, + 0Ee) =0 (1.2)
>0

Sgtt= lim (Epy + (2 — ) &xey) =0, |r|<a
y—ko

Here %k, is the wave number of the plate bending vibrations, and ¢ 1is Poisson's ratio.
Conditions (1.2), denoting the absence of a bending moment and a transverse force at the
crack edges, can be conveniently rewritten in the form

(S — S )EW =0; S, =0, |2]<a (1.4)

The subscript 7 takes on the values 2 and 3 here and henceforth. The first condition of
(1.3) is satified along the whole axis and does not contain the incident field because of its
continuity.

The scattered field must satisfy the radiation condition. To select a physically meaning-
ful solution it is also necessary to specify the following behaviour of &1 in the neighbour-

hood of the crack tips
LEO) LELO) (1.4)
r=(ztaf + yHYr—0

W =g

8 = arctg

*+
y
z-t+a/’

The absence of a term of the form &y* (0)r't follows from the requirement that the energy
stored in any bounded domain of the plate must be finite, while the presence of the term g+
(0)*s  results in the singularity r*: mentioned in /1/ for the transverse force. It can
be shown that despite such a strong singularity of the force, the total energy flux through
a circle of small radius enclosing the crack tip will vanish because of the special dependence
of the solution on the angle in the limit. This enables us to prove a theorem on the unique-
ness of the solution of the boundary-value problem /3/.

We introduce the dimensionless coordinates 2', ¥ and the wave number Fk,

' =ala, y =yla, ky =kia (1.5)
Since the subsequent discussion will make use of dimensionless quantities, the prime will

be omitted below. We will return to dimensional quantities only in the final formulas, as
will be indicated.
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2. Beduction of the problem to integral equations of the first kind. We will seek the
scattered field E® in the form of an expansion in plane waves with the unknown functions
p; (1) * (*Kouzov D.P., Boundary-contact problems of the acoustics of a plate-fluid system.
Doctorate Dissertation, Acoustics Institute, USSR Academy of Sciences, 1986).

3 oo
i = s, { exp (kyar) p, () (207 exp (iky [y 7.) — (2.1)
=0 —o

(T texp(— ko |y |T,)dT sp=sp =1, 5= s,=sign(y)

pe = (1 -+ p»’,  the symbol u is replaced by different variables &, f, . The contour of
integration passes along the real axis, bypassing the poles of the integrand at the points

T =—1 and T =41 from above and below, respectively. The number of components in (2.1}
is determined by the order of the differential operator (1.1). The components with numbers

0 and 2 form the part of the field even in y, and those with numbers 1 and 3 the part of the
field odd in y. The behaviour of the functions p; at infinity is governed by the asymptotic

forms {1l.4) .
p; (¥) = O {v7) 2.2y

Therefore, the integrals converge for all values of 1z, y.
The representation (2.1} automatically satisfies (1.1) outside the axis ¥y ={ since

3 o N
(A — k) E® = 4 ):ki‘;f g exp (ikoz) p; (%) dt(-—i%)’é(y)

=0 e

In order for {1.1) to be satisfied everywhere outside the crack, it remains to require
that the following integrals vanish:

Feo
{ exp(ikar) p, () dr =0, [z]<1, 0<j<3 (2.3)

—00

We now turn to the boundary conditions {1.3). Substituting the representation {2.1) and
carrying out formal differentiation under the integral sign {we will understand the divergent
Fourier integral in the sense of generalized functions), we find from the first condition in

(1.3) o (@) = oty (1), Py (1) = (2 ~ 0) ¥ip, (1) (2.4)

Taking (2.4) into account, we write the equations originating from the second condition
in {1.3) in the form
oo
K5 § exp () G (1) po (7) de = 'S, 50 (@), [ < 1 2.5)

Gy (15 =it —o)e* — 1271 —[{1 —o0)1® 4-1127,!
Gy(t) = —il(l — o) + 112t —[({ — o)1 — 121,

The symbol * is omitted for the operators S, because of the continuity of the incident
field t®,

Therefore, the problem reduces to solving the integral Egs.(2.3) and (2.5) for p, and
ps- Equations of this type often occur in diffraction problems and are solved by the Wiener-
Hopf method for large values of k,, which enables the field to be represented in the form of
the superposition of waves multiply rereflected from the ends of the inhomogeneity
/4/. We will be interested in not too large k, and will proceed in a different manner /1i/.
In order to satisfy the uniform equations outside the crack, we will represent the functions
p: by Fourier transforms in the segment

3

Pa(t) = § @, () exp(— ikytr)dt (2.6)
~%

Substitut%ng these representations into (2.5), and evaluating the integrals with respect
to T, we obtain integral equations of the first kind

1
Kopn=§ Ko (e — 1), (t) dt = im155%8,80) (z) @
—1
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x

Ko(0) =K § exp(ikpr) G, (1) du

oo
The explicit form of the kernel K, that is a certain combination of Hankel and Macdonald
functions, is not required.

3. Investigation of the kermels, and the existence and uniqueness of the solutions. we
extract the highest singularity of the kernels K, and K, To do this we indicate the nature
of the growth of their Fourier transforms as 1 — oo

G (1) = —= [T |+ G (3), G (v) = O (%)
Ge(D) =2 |T1*+ G (1), G () =00 %={1—~0}Y3B+0)

We hence find
Ko (p) = —2ukey™ (&*/dp®) In | p | -+ Ky (p)
K lp) = —2nky (ddp"yIn 1 p | + Ky {p)

The corrections XK, are functions that are integrable in the segment. Therefore, when
{2.7) are next written, the integrals are understood in the ordinary sense:

— 2 S In |z — ¢ |y (t)dt + k,,zs Ky (¢ — ) 9, (£) dt = iSO () 3.1
- 2“’:‘_% S Info—~t]gs () dt + & S B (z— 1) @q (t) dt == — E, S0 (&)

Here and henceforth, unless otherwise specified, the integration will be performed
between the limits —1and +1.
Conditions (2.2) dictate the following behaviour for the function ¢,

Po {8) = 1@y (1), 3 (1) = t.39" (1) (3.2)

We will investigate the guestion of the existence and unigueness of the solutions of the
integral Egs. (3.1 in the classes of functions with behaviour given by {3.2). Acting with the
integration operator two and four times, respectively, on {3.1), we reduce them to the form
of integral equations with a logarithmic singularity in the kernels L,

Lta={{ln |z —t |+ L' (& — )} ¢ (t) dt = by (2) (3.3)

The right-hand sides %, and h; contain two and four arbitrary constants {constants of
integration), respectively. As is well-known /5/, the solution of {3.3) exists and is unique
for any functions h, with derivative from the Holder class and representable in the form

P (1) = @, @)1, (3.4)
where @, () are functions from the Holder class.

Using the representation of the kernels L, in terms of certain analytic functions a, {p)
and &, {(p)

Ln(P}xlﬂlpl+an(9)15395+bn(P)s a, (0y =0 {3.5)
it can be shown that for a right~hand side from €~{—1, 1] the functions are @, = > x [—i,
4] (the result is similar to that presented in /6/, where integral equations with a simpler
kernel {3.5) were considered for a,({(p)=0). We will first prove an auxiliary lemma.

Lemma 1. For any h from CM#2[—4 1], the solution of the integral eguation
) N
Cinfz—1] oz — ) @ () dt = h (z)
{==f)

for any finite N can be represented in the form
P (t) -~ D (&)t (3.6)

with the functions @ (f) from the class M [—1, 1]

Proof. Using the formula for differentiating expressions of the form p'lnipl, we rewrite
the kernel as follows:
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N N-I
Vg & _(nfz—tlz — )+ R(z—1)
U g N
=0

where R is a certain polynomial. Changing the order of differentiation and integration with
respect to ¢ = LV¢ = § In|z—t](z—t)"¢ () dt, we obtain the differential equation

Since the right-hand side lies in ¢M*[—{,1]. the solution of the differential equation
is a function from CN*M*2[(,1] and 4yp/dsY = M2, 1] We now understand the expression
d¥LNg/iN  as the result of the operator LO=g4"L"/4:" with the kernel In|z—t|+ const acting
on the function ¢. Therefore, the function ¢ is a solution of the inegral equation Ligp=
aNpldN with right-hand side from ¢M*?[—{,1]. According to /6/ (Theorem 23.2), the solution
of such an equation can be represented in the form (3.6) with function @ from M1, 1].

We will now prove the property of smoothness of @, for (3.3).

Theorem 1. The solution of the integral Eq.(3.3) can be represented in the form (3.4)
with the functions @, €=[—1,"] for any right-hand side fro C=[—1, 1]
with the functions @, < 11  for any right-hand side from 1,11,

Proof. We assume the opposite: let the N-th derivative of the functions ®, be dis-
continuous. Then we expand a, in a Taylor series and retain N 41 terms on the left-hand
side and transfer the remainder over to the right-hand side together with a convolution of ¢,
with b,. Differentiating under the integral sign, it can be shown that the right-hand side
is a function from CN+2[—1, 1]. But according to Lemma 1 &, < (CN¥[—-1,1]. Therefore, we have
arrived at a contradiction, that indeed proves the theorem because of the uniqueness of the
solution.

Taking account of the smoothness properties proved for @, the conditions (3.2) mean
that the equalities

Dy (1) =0, Dg(x1) =0, dD;(x1)/dt =0 (3.7)
should be satisfied.
To satisfy these requirements we use the arbitrariness in &,

{d/Ax\"28 E0) L.~ _I_ 4 — {
1WG/GX) "Pos b ep o, By = — {

dpx® 4 dy2®

73

We will show that {3.7) for the constants ¢; and d; are solvable uniquely.
We will first prove such solvability for the first integral equation (n = 2). We introduce
the functions VP, and 1V, that are solutions of the equations

§Liz— @t =2', 1=0,1 (3.8)

into the consideration.
We note that the a_ymou. of the operator Lz has a POSiti\ie ll_lla(jlﬁ&l"y'

kernel L, 1is an even function. The following lemma holds for v, .

part while the

Lemma 2. For integral Egs.(3.8) with kernel of the form (3.5) and sign-definite pro-
Jections of the symbol in a certain direction in the complex plane, the values of the functions
P; at the ends of the interval of integration are non-zero.

'h

Proof Taking account of the nronerti

Proof. Taking account of the properties o

sufficient to prove that their values differ from zero at one end.
We assume the opposite. Then differentiating (3.8) with respect to & and transferring
the derivative from the kernel to 17! (there are no terms cutside th

the derivatlve rrom the XKernel tO Vil fther

the assumption), we have

£ b "Aa
Y 4] a

$Ly (z — 1) @09 @) t3Vdr) de = 1, 1= 0, 1

Because of the uniqueness of the solution we obtain that for I1=0 the expression in the
square brackets is independent of f, which results in the identity v,=0 contradicting (3.8),
on the basis of the structure of the solution set up in Theorem 1. For I=1 we obtain

t
Wy (e S Yoy et ar
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We multiply the integral equations for ¥, by ,{ = (the bar is the symbol of the
complex conjugate) and we integrate over the segment. After changing to the Fourier trans-
form H of the kernel we have

P

(T)(u(1)|‘d1:._)1b o (£) £ -xdtﬁhmw,( YioTle= 0

31/—.. 2

u (1) == \t'% (z)2_"1e'™ da

Because of the sign-definiteness of the projection of the symbol H (1) we necessarily
arrive at the identity u (=0, 1i.e., %, (=0, which contradicts {3.8).

On the basis of Lemma 2 and the properties of evenness and oddness of Y it can be seen
that the determinant of the matrix of the system of linear algebraic equations is non-zero
for the constants cg, ¢y Therefore, the following theorem holds.

Theorem 2. The integral Eq.(3.1) for ¢, is solvable uniquely in the class of functions

of the form {2.2) for any smooth right=hand cida

of the form {3.2) for any smooth right-hand side.
Consider the integral Eq.({(3.1) for ¢, We will determine the constants d; in two stages.
We first consider d, and d, to be known, while we find d, and ¢, from the system @, (+

1) == ), analogous to that examined above, and therefore, sclvable uniquely +he sol~

Then
analogous that mined abo and therefore, seclvable uniguely. Then sol
e

ution of the second equation in (3.1) can be represented in the form g, (t) = @, with
smooth function @;. The last pair of conditions in (3.7) denotes @y (+1) =0 in terms of
@y’ The solvability of thig system for d, and d; is proved in the same way as the soly~

ability of the first pair of relationships in (3.7) and is based on the properties of solv-

ability of the first equation in (3.1) in the class (3.2) established in Theorem 2, that are
analogous to the :rﬂvalfn'hfv hrnnnrf1n= of (3.3) in the clasg (3.4}, Therefore, we arrive

1a10gous Qlvabliil artl (2.2} 1n the Cclasg {342 ineraeror¥e, we arvive

at the following assertion.

Theorem 3. The solution of the integral Eq.(3.1) for g, can be represented in the form
(3.3) with @y =C={—1,1] for any right-hand side from (= X[-1, 1], and the solution in
the class mentioned is unique.

4. Scheme for the mumerical solution of integral equations. We will use the method of
orthogonal polynomials for the numerical solution of the integral Egs.(3.1). By selecting

apropriate systems of orthogonal polynomials /7/ this method enables us to take into account
the nature of the behaviour of the solutions at the ends of the interval of integration. We
will seek the solution ¢, in the form of the following expansions with the unknown coef~

ficients a, P

®a(t) =t Bealli(th @s(t) =12 28w (41)

where U; are Chebyshev polynomials of the second kind and P are Gegenbauer polynomials.
The choice of these polynomials is determined by the fact that they are eigenfunctions of the
principal parts of the integral operators

.i'?f..ﬂln | — 11 U dt =n(l + YU, (z)
Sln]r~7]t3(’5”(3)(&*3(34—1 @+ 2 +3)C? (@)

d;r‘

After substituting the expansions (4.1) into the appropriate integral equations, we
equate coefflclents of polynomlals of identical numbers and we obtain infinite systems of
AR

ong to dararmine R
ons to

iLineary “L‘:’CMLQJ.\' equ gerarmine i, P

sl - Doy + w7 Z Ay = 17, (%2

Sy

AR 2 Bt kY Bunf = s

me=f

where f, and g are coefficients of the expansion of the right-hand sides
fo=1 (S0 (@) 2.0, (1) da, gy = — K, | SE® () 2 30 (z) du

The elements .4;, and R, of the matrices of the systems are expressed by double
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integrals
A =SB @ — )10 ()2 Un (2) de da (4.3)
B = Ky (z — 23¢9 22D () dt da

We note that the elements A, Bi,  with subscripts of different evenness vanish, which
corresponds to partition of the field 8N into even and odd parts in x. Therefore, each of
the systems (4.2) decomposes into two independent systems for the coefficients o; and §
with even and odd numbers.

In order to avoid double integrals in the representations {4.3), we turn to Fourier
transforms of the kernels K, . The integrals with respect to & and ¢ are afterwards easily
expressed in terms of Bessel functions. Consequently, the elements A;, and B, are written
in the form of integrals of functions with a power-law decrease of the order O (17%) at
infinity, over the semi-axis

Ay = — 20552 (1 + 1) (m + )7 § 6 (1) Tias (o) Toman (— ko¥) 72T (4-4)
8
Bim = Yyr®e™® (L + 1) (1 + 2) (1 + 8) (m + 1) (m + 2) (m + 3) #*m
S Gy’ (1) T 142 (RgT) T s (— Kgr) 170 dT

L]

The convergence of the integrals (4.4) can be accelerated by extracting singular terms
of the form (z—1t)¥Injz—1t| and Infz—1t]|, respectively, out of the kernels K, and
Ky'. The integrals containing the extracted terms are evaluated analytically and generate a
five-diagonal matrix. After extraction of the singular terms, the decrease .of the integrands
in the representation of the matrix elements of the system (4.2) is accelerated to O (v,
By extracting the next singular terms, a power-law decrease can be achieved with arbitrary
exponent. The first step in the procedure described is utilized below to represent the
elements. B;,, and enables us to obtain a more exact estimate of the rate of their decrease

in subscripts.

We will solve system (4.2) by the method of reduction.

To justify this method we will estimate the behaviour of the elements 4;, and Bm in
the subscripts. We consider the representation {4.4) for 4,,. We divide the semi-axis into
two parts by the point 1= 7. We use the estimate |Jn 8| < {&/2™/m! in the interval between 0
and T for the Bessel function and the integrability of the kernel &’ (1. In order for the
singularities not to occur at zerc after taking the Bessel function outside the integral sign,
we will first use the recursion relationships

Im (=) + Jm+g (2} = 2{(m+ 1) J-m+1 (z)/z

Consequently, we have the estimate

T
A+ 1) m+1) | 5 G ()7, (o) Ty ) -2 | <
0

kT [2)™ (koT/2) _ (keTi2p
ok B (14 o) (e D e )

In the integral of the Bessel function between T and infinity, we estimate the units and
take account of the decrease in the expression [ (3)71%]< (o

i+ 1}(m+1)‘ S Gol (1) Ty (heT) T gy Vgt 7208 ) S Co 1) (m—- 1) T4
T

We select the value of T from the condition for the total estimate to be a minimum, from
which we have after some rounding-off

| A | < Cy (ko/2)8 3+ 1) (m -+ 1) (1 -+ D! (m 4 1);)—1/ L+m)

On the basis of Stirling's formula for the factorial, the reduced estimate means that
the elements 4;» decrease at the rate m* near the diagonal and at the rate m=* for 1<€m.

An analogous estimate performed directly for the integral representation for &, is
not satisfied. Consequently, we first extract singular terms of the form Cilnjz—¢t| from
the kernel Xy, which we expand in Gegenbauer polynomials
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By, = By — Yo ka0 (0 (y (14 32 F 4 (1 4+ 2) - (L4 O+ 4) —
TR ) - 8T - 3) (1 — 3))
22, 1 0
v, =
! { 1, 10
The decrease in the integrands in the representation of B,,, is accelerated to 0 (1Y),

as was noted above, which enables us to obtain the following estimate of the behaviour of the
corrections in the subscripts:
[ By | << Cy (hof25Bmd (Mmt) /)

i.e., the elements B;,, have a weak growth on the order of m on the diagonals but decrease
as m® far from the diagonals.

The infinite system is quasicompletely regular /8/ if for each row of its matrix the sums
of the absolute values of the off-diagonal elements are finite after normalization by the
diagonal elements and starting with a certain row number ¥ is less than 1 —¢,e>0. Taking
account of the estimates obtained for the behaviour of the elements A4;, and By, in the
subscripts, it can be established that the following theorem is satisfied.

Theorem 4. The infinite systems (4.2) are quasiregular for any finite &,

As we know, the method of reduction converges for quasicompletely regular systems to
the solution of an infinite system if the finite system of N first equations is solvable.
For large values of &, the number N becomes large and the matrices of the system (4.2)
obviously become ill-posed.

5. Investigation of the solution. The radiation pattern. After the systems (4.2)
have been solved, the scattered field is constructed by means of (2.4), (2.6) and (4.1). We
simplify the representation obtained for &®., For this, we take account of (2.4) and rewrite
(2.1) in the form of the sum of even and odd displacement field component in Yy

= — S exp (ikyxt) p, (T) (% exp (ik, | y|17_) - —Ef exp(—koly| 1:+))+ (5.1)

—a0
oo

sign(y) | exp (i) py (1) €, exp (ko |y | 7) — C_exp(— k| y|7,) dr

—e0

e =(1—0)x1)

After substituting (4.1) into {2.6) and evaluating the integrals we obtain Bessel func-
tion expansions for the functions p,,;

o

. 141 (ko
pa(m) =m Y au(—if 4+ gL (5.2)
=0

8

749 (RoT)

Po(v) =5 ¥ Bi(— ' U+ D+ 20+ 3) Hiem

m}

It can be asserted on the basis of the smoothness of the solutions of the integral
equations proved in Sect.3 that the coefficients «; and fi; in the expansions (5.2) decrease
with number in a superpower manner /9/. Consequently, the summation limits can be replaced
by a certain number N with the introduction of as small an error as desired. Then the field
is expressed by a single integral of the sum of a certain finite number of components.

The asymptotic form of the scattered field at infinity is of considerable interest. Let
the incident field be a plane wave &® = exp (ik, (z cos ¥, -+ ysind,)). We introduce the polar
coordinates z = rcos® Yy =rsind and we evaluate the integrals in (5.1) by the stationary-
phase method. The second component in each integral makes an exponentially small contribution
as ko —»o0, while the first form a diverging cylindrical wave

D (%)VIexp (zkor —i —1,;—> W (8§, O)

The radiation pattern ¥ 1is expressed in terms of P: and p; at the point 7T = cos®

¥ (#, ) = —p, (cos¥) (1 — &) cos? & — 1) + (5.3)
ps (cos ®) (1 — o) cos® & + 1) sin &

Formula (5.3) is exact. It is valid for an arbitrary incident field whose characteristics
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are contained in the functions p, and p,, determined according to (5.2) by the solutions of

systems (4.2). . .
We will investigate the asymptotic form ¥ as %k, -0, i.e., we study scattering by a

short crack. We replace the Bessel functions in {5.2) by the highest terms in the Taylor
series expansion

o

Po(0) = 5 ¥ o (= i)'+ 1) o’

=0

P = 3 (=0 + D+ D+ 3 ker)!
i=g

In order to determine the order of the coefficients o, and B in k. we will investigate
the asymptotic form of the matrices of system (4.2). We obtain the following estimate for
the coefficients Bim: Bym = 0 (ko). A more exact asymptotic form, that can be obtained by
investigating the expansion of the kernel K, in the neighbourhood of the point t=2zx, is
required for A4;,

Aup =35 (307 + 20 +3) + O (?), Ay = O (i)

The coefficients f; and g are calculated explicitly for the case of plane-wave incidence
and have the asymptotic forms

fi == ik 210, {0) (I + 1) Jraa (ko c0s ©)/ (ko cOs Bg) ~
1,41 2018, (0) (T 4 1) (ko cos )
g1 =" k" 7w sin §68e (2 — o) (I + 1) (I + 2) ({ + 3) Juse (ko cos Bo)/
(ko cos 0y)* ~ Mitktn sin 88, (2 — o) (L + 1) (L + 2) I + 3)-
(% cos §,/2)"
8, (0) = (sin®> ¥, + o cos 2 &)

Solving systems {4.2) for the highest terms of the expansions ¢, and @3 we obtain the
following radiation pattern asymptotic form:

¥ (@, &) = w20 (0} 8, (0) (i — Yyvxt (302 + 20 + 3) + (5.4)
iveos & cos By + O (vH)) + 2v310 (2 — 0) 8, (2 —
o} sin & sin &, (i + O (v))
v = (koa/2)}, 0 (0) = (sin?® + ¢ cos?®)

{we have returned to dimensional quantities in {5.4)).

As we know, the effective scattering cross-section is defined as the ratio between the
energy scattered during diffraction by an inhomogeneity, and the energy arriving per unit
length of the incident wave front and is expressed in terms of the radiation pattern by two
methods /2/

2= (w0, 8)pa0, T 22 Ro(¥ (8,0,) (5.5)

-7

Let us verify the mentioned identity, called the optical theorem. The highest term in
the expansion of ¥ is pure imaginary and, therefore, makes no contribution to the second
equality in (5.5). Therefore, it is necessary to compare the contribution of this term to
the first equality in {5.5) with the contribution of the real component in the next term of
the radiation pattern expansion. Carrying out the appropriate calculations, we see that the
optical theorem is satisfied in the highest term and the asymptotic form

2 = kylat ';Tﬁs{i:—;l%{j&')? (00032 &y + sin? B,)* + O (ky°a®)

is satisfied for the scattering cross-section.

The author is grateful to B.P. Belinskii for his interest.
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THE BOUNDARY-LAYER METHOD IN THE FRACTURE MECHANICS OF
COMPOSITES OF PERIODIC STRUCTURE*

A.L. KALAMKAROV, B.A. KUDRIAVTSEV and V.Z. PARTON

The problem of a rectilinear crack in a composite material of doubly -
periodic structure is considered. It is assumed that the dimensions of
the crack are considerably greater than the «cell of material
periodicity. A boundary-layer method based on the use of the asymptotic
method of averaging periodic structures, taking additional solutions of
boundary-layer type /1/ into account to allow the edge effect that
occurs near the boundary of the crack outline to be considered, is
proposed for analysing the stress field in the neighbourhood of a
macrocrack.

Analysis of the stress field in highly inhomogeneous (composite)
materials with an idealized smooth macrocrack is usually performed by
replacing the inhomogeneous composite medium by a certain homogeneous
anisotropic medium that is eguivalent to the composite material with
respect to the average reaction. Such an approach enables the
computation of the average stress field in the composite with a
macrocrack to be reduced to solving elasticity theory problems for an
anisotropic homogenecus material with a mathematical slit. If the
material has a periodic structure (as is true of many composites), the
average (effective) characteristics of the equivalent should be
determined by the method of averaging periodic structures /1-3/ which
yields an asymptotically correct approximation to the exact solution of
the problem for the initial inhomogeneous medium. The averaging method
here allows the local structure of the fields being investigated to be
determined with a high degree of accuracy. This approach was used in
/4/ to analyse the stress field near a macrocrack in laminar composites
of periodic structure. In a number of cases formulas were obtained for
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