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SCATTERING OF A BENDING WAVE BY A FINITE 

IN AN ELASTIC PLATE* 

I.V. ANDRONQV 

The displacement field scattered by a rectilinear 
length in a plate vibrating in bending is 

RECTILINEAR CRACK 

thin crack of finite 
investigated. The 

boundary-value problem is reduced to integral equations on a segment by 
methods analogous to those developed in /l/. These integral equations 
are later replaced by the method of orthogonal polynomials, by infinite 
algebraic systems solved by the method of reduction. These systems also 
enable one to find the asymptotic form of the scattered field in the 
case of a short crack. The asymptotic form of the radiation pattern of 
a cylindrical wave divergingfrom the crack and the effective scattering 
cross-section are constructed. The results are monitored by using an 
optical theorem /2/. 

1. Formulation of the problem and change to dimensionless quantities. The problem of 
the scattering of an incident field ~M)(z,Y) by a crack R={lrj<a,y =O} in a thin 
infinitely extended plate consists of seeking the scattered field E!')(x,Y), that satisfies 
the equation of bending vibrations 

ha&l) - k,,45(1) = 0, (5, y) f 24 (1.1) 

so that the total field E = t?') + E(l) satisfies the boundary conditions 

Here k, is the wave number of the plate bending vibrations, and u is Poisson's ratio. 
Conditions (1.2), denoting the absence of a bending moment and a transverse force at the 

crack edges, can be conveniently rewritten in the form 

(s,+ - SJE"' = 0; s,+; = 0, IJI<a ll.;i) 

The subscript n takes on the values 2 and 3 here and henceforth. The first condition of 
(1.3) is satified along the whole axis and does not contain the incident field because of its 
continuity. 

The scattered field must satisfy the radiation condition. To select a physically meaning- 
ful solution it is also necessary to specify the following behaviour of c(1) in the neighbour- 
hood of the crack tips 

E(1) = &* + Ef (8)r + @j%(8) rS', ;m . 

fkarctp(&, r=((51a)ai-y2)‘/,-~..0 

(1.4) 

The absence of a term of the form 5X,,* @)r"> follows from the requirement that the energy 
stored in any bounded domain of the plate must be finite, while the presence of the term 5%* 
(0)rc!' results in the singularity r'!* mentioned in /l/ for the transverse force. It can 
be shown that despite such a strong singularity of the force, the total energy flux through 
a circle of small radius enclosing the crack tip will vanish because of the special dependence 
of the solution on the angle in the limit. This enables us to prove a theorem on the unique- 
ness of the solution of the boundary-value problem /3/. 

We introduce the dimensionless coordinates x’, y’ and the wave number It,’ 

x’ = da, y’ = yia, k,’ = k,‘a (1.5) 

Since the subsequent discussion will make use of dimensionless quantities, the prime will 
be omitted below. We will return to dimensional quantities only in the final formulas, as 
will be indicated. 
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2. RedUCtiO?I of the probZem to integd equations of the first kind. We will seek the 
scattered field Et*) in the form of an expansion in plane waves with the unknown functions 

Pj 6) * (*KOUZOV G-P., Boundary-contact problems of the acoustics of a plate-fluid system. 
Doctorate Dissertation, Acoustics Institute, USSR Academy of Sciences, 1986). 

(2.1) 

& = (1 + Fil)“*, the symbol p is replaced by different variables x, t, Z. The contour of 
integration passes along the real axis, bypassing the poles of the integrand at the points 
z = --1 and 7 =1 from above and below, respectively. The number of components in (2.1) 
is determined by the order of the differential operator (1.1). The components with numbers 
0 and 2 form the part of the field even in y, and those with numbers 1 and 3 the part of the 
field odd in y. The behaviour of the functions pj at infinity is governed by the asymptotic 
forms (1.4) 

pf (T) = 0 &zig-j) t=t 

Therefore, the integrals converge for all values of 5, y. 
The representation (2.1) automatically satisfies (1.1) outside the axis y=o since 

(Aa - k,b) ~(1) = 4 + k;-j j 
j=$ 

exp (ik,+r) pj (T) &C (- i $)j 15 (Y) 
-a) 

In order for (1.1) to be satisfied everywhere outside the crack, it remains to require 
that the following integrals vanish: 

We now turn to 
carrying out formal 
Fourier integral in 
(1.31 

+- 
S exp (%k,m) pj (z) do = 0,/z I< 1, 0 Q j < 3 (2.3) 

-m 

the boundary conditions (1.3). Substituting the representation (2.1) and 
differentiation under the integral sign (we will understand the divergent 
the sense of generalized functions) , we find from the first condition in 

170 (r) = cJz%a (z), Pl w = (2 - 0) T”P3 b) (2.4) 

Taking (2.4) into account, we write the equations originating from the second condition 
in (1.3) in the form 

GO (4 = i [(l - 0) r2 - lla T_-* - [(I - U) 9 + II* T+-* 
G, (T) = --i [(l - u) T* + 112 T_ - [(l - u) Te - 1Je T+ 

The symbol f is omitted for the operators S, because of the continuity of the incident 
field E f"). 

Therefore, the problem reduces to solving the integral Eqs.12.3) and (2.5) for pB and 

Ps. Equations of this type often occur in diffraction problems and are solved by the Wiener- 
Hopf method for large values of ko, which enables the field to be represented in the form of 
the superposition of waves multiply rereflected from the ends of the inhomogeneity 
/4/. WC? will be interested in not too large k. and will proceed in a different manner /l/. 
In order to satisfy the uniform equations outside the crack, we will represent the functions 
pi by Fourier transforms in the segment 

pn (z) = [ qn (t) exp (- ik& dt 
-1 

(2.6) 

Substituting these representations into (2.5), and evaluating the integrals with respect 
to z, we obtain integral equations of the first kind 

1 
IQ,= 5 R,,(s--t)cp,(t)dt = i”“k;*S,~‘“‘(zf 

-1 
(2.7) 
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K,(p) = k:-’ 1 exp (ik& G, (a) dz 
-a 

The explicit form of the kernel K, that is a certain combination of Hankel and Macdonald 
functions, is not required. 

3. Investigation of the kemets, and the existence and uniqueness of the so’lutims. We 
extract the highest singularity of the kernels K, and K,. To do this we indicate the nature 
of the growth of their Fourier transforms as z-+on 

Gz (a) = --x 1 z 1 +- G,’ fz), Gz’ (z) :-_z 0 (r-3) 
G, (z) = x ) 7 ] 3 + G; (z), G3’ (a) = 0 (T-‘); x = (1 - u)/(3 + u) 

We hence find 

& (p) = --~x?c~-~ (d2/dpe) In \ p [ -I- K,’ (p) 

The corrections &' are functions that are integrable in the segment. Therefore, when 
(2.7) are next written, the integrals are understood in the ordinary sense: 

-2x-g 5 In 1 cc -- t ) qa (t) dt _t k,Z 1 K,’ (s - t) ‘P* (t) dt = iS&,(o) (5) (3.1) 

Here and henceforth, unless otherwise specified, the integration will be performed 
between the limits --1 and -i-f. 

Conditions (2.2) dictate the following behaviour for the function (P% 

fp? (Q = t_YJ; (tf* %I 0) = L%, (t) (3.2) 

We will investigate the question of the existence and uniqueness of the solutions of the 
integral Eqs.(3.1 in the classes of functions with behaviour given by (3.2). Acting with the 
integration operator two and four times, respectively, on (3.11, we reduce them to the form 
of integral equations with a logarithmic singularity in the kernels L, 

.&w=~ (1 n I z -. t / + I,,’ (z - t)} cpn (t) dt = h,(z) 

The right-hand sides h, and h, contain two and four arbitrary constants (constants of 
integration), respectively. As is well-known 151, the solution of (3.3) exists and is unique 
for any functions h, with derivative from the Hzlder class and representable in the form 

%I (2) = CD, (t)lt- 
where Q,(t) are functions from the Hi;lder class. 

Using the representation of the kernels L, in terms of certain analytic 

and b,(p) 
L* (P) = In 1P I 4- a, (PI In i P I + b, (ph an tot = 0 

it can be shown that for a right-hand side from c-[-i, 11 the functions are 
11 (the result is similar to that presented in /b,f, where integral equations . _. .~~ . ._. 

(3.4) 

functions a,(p) 

(3.5) 

@&~C"X I-1, 
with a simpler 

kernel (3.5) were considered for a,(p)=u). We ~111 first prove an auxilrary lemma. 

Lemma 1. Fof any h from 1Y+~[-1,1], the solution of the integral equation 

for any finite N can be represented in the form 
'p (f) -- 4, (t)/t_ (3.6) 

with the functions Q(f) from the class OM [-I, 11 

Proof. Using the formula for differentiating expressions of the form pzlnfpj, we rewrite 
the kernel as follows: 
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where R is a certain polynomial. Changing the order of differentiation and integration with 

respect to $=LNcpSSl n z- tI@- t)Nrp(t)dt, we obtain the differential equation I 

Since the right-hand side lies in CMta[--1,11. the solution of the differential equation 
is a function from CNtMta [--1,11 and aNq/drN E ~?+~[-1, il. We now understand the expression 

dNLNcpldp as the result of the operator LO SE dNLNIdzN with the kernel lnlz--/++eonst acting 
on the function cp. Therefore, the function cp is a solution of the inegral equation LO$l= 
dN$tdp with right-hand side from CMta[-1.11. According to /6/ (Theorem 23.21, the solution 
of such an equation can be represented in the form (3.6) with function Q from CM[--1, 11. 

We will now prove the property of smoothness of @,, for (3.3). 

Theorem 1. The solution of the integral Eq.(3.3) can be represented in the form (3.4) 
with the functions @,E P[-I,*11 for any right-hand side from c- [-I, II. 

Proof. We assume the opposite: let the N-th derivative of the functions (D, be dis- 
continuous. Then we expand a, in a Taylor series and retain N +l terms on the left-hand 
side and transfer the remainder over to the right-hand side together with a convolution of qn 
with b,. Differentiating under the integral sign, it can be shown that the right-hand side 
is a function from IZN+~ [-1,11. But according to Lemma 1 @,,E CN[-l,I]. Therefore, we have 
arrived at a contradiction, that indeed proves the theorem because of the uniqueness of the 
solution. 

Taking account of the smoothness properties proved for @,, the conditions (3.2) mean 
that the equalities 

oz (*I) = 0, Q3 (ItI) = 0, d@,, (+I)/& = 0 (3.7). 

should be satisfied. 
To satisfy these requirements we use the arbitrariness in h,, 

h, = i (d/d~)-~S&~) + co t- clx, h, = - (d/d~)-*S&(~) + d, + d,x + 
d,x2 + d,4 

We will show that (3.7) for the constants cI and d, are solvable uniquely. 
We will first prove such solvability for the first integral equation (?z = 2). We introduce 

the functions 9, and +I that are solutions of the equations 

JL, (z - t)v!(t) t_-'dt = +I, 1 = 0, 1 (3.8) 

into the consideration. 
We note that the symbol of the operator L, has a positive imaginary part while the 

kernel L, is an even function. The following lemma holds for I&. 

Lemma 2. For integral Eqs.(3.8) with kernel of the form (3.5) and sign-definite pro- 
Jections of the symbol in a certain direction in the complex plane, the values of the functions 
$1 at the ends of the interval of integration are non-zero. 

Proof. Taking account of the properties of evenness of lPa and oddness of lpl it is 
sufficient to prove that their values differ from zero at one end. 

We assume the opposite. Then differentiating (3.8) with respect to z and transferring 
the derivative from the kernel to +it_+ (there are no terms outside the integral because of 
the assumption), we have 

Because of 
square brackets 
on the basis of 

@, (z - t) (d [Vl (t) tll/dt) dt = 1, 1 = 0, 1 

the uniqueness of the solution we obtain that for Z= 0 the expression in the 
is independent of t, which results in the identity &GO contradicting (3.81, 
the structure of the solution set up in Theorem 1. For Z=1 we obtain 

$', (t)t-L&,(t')~' dt' 
0 
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We multiply the integral equations for lie by &(X)X--~ (the bar is the symbol of the 
complex conjugate) and we integrate over the segment. After changing to the Fourier trans- 
form H of the kernel we have 

Because of the sign-definiteness of the projection of the symbol U(T) we necessarily 
arrive at the identity u(~)fO, i.e., lpo(~)=Oo, which contradicts (3.8). 

On the basis of Lemma 2 and the properties of evenness and oddness of $1 it can be seen 
that the determinant of the matrix of the system of linear algebraic equations is non-zero 
for the constants cl33 cr. Therefore, the following theorem holds. 

Theorem 2. The integral Eq.(3.1) for 'pz is solvable uniquely in the class of functions 
of the form (3.21 for any smooth right-hand side. 

Consider the integral Eq.(3.1) for 'pS. We will determine the constants dl in two stages. 
We first consider d, and d, to be known, while we find do and dl from the system %(f 
1) = 0, analogous to that examined above, and therefore, solvable uniquely. Then the sol- 
utionof thesecond equation in (3.1) can be represented in the form va(t) = @,'(t)t_ with 
smooth function m3'. The last pair of conditions in (3.7) denotes $'(*I) =O in terms of 
4D;. The solvability of this system for d, and d, is proved in the same way as the solv- 
ability of the first pair of relationships in (3.7) and is based on the properties of solv- 
ability of the first equation in (3.1) in the class (3.2) established in Theorem 2, that are 
analogous to the solvability properties of (3.3) in the class (3.4). Therefore, we arrive 
at the following assertion. 

Theorem 3. The solution of the integral Eq.(3.1) for 'pa can be represented in the form 
(3.3) with rp,'EC"I-I,11 for any right-hand side from c- Xi--l,If, and the solution in 
the class mentioned is unique. 

4. Scheme for the mmerica~ sob&ion of integrat equations. We will use the method of 
orthogonal polynomials for the numerical solution of the integral Eqs.(3.1). 3y selecting 
apropriate systems of orthogonal polynomials /71 this method enables us to take into account 
the nature of the behaviour of the solutions at the ends of the interval of integration. We 
will seek the solution rp, in the form of the following expansions with the unknown coef- 
ficients a,, f& 

(4.1) 

where & are Chebyshev polynomials of the second kind and cl"' are Gegenbauer polynomials. 
The choice of these polynomials is determined by the fact that they are eigenfunctions of the 
principal parts of the integral operators 

~flI~]x--t/rrCil(t)dt=n(~ -I- i)U,(x) 

~~In]"-f~t~CI"(t)dt=n(z+1)(2-;3)(z-i_J)Cl~'(~) 

After substituting the expansions (4.1) into the appropriate integral equations, we 
equate coefficients of polynomials of identical numbers and we obtain infinite systems of 
linear algebraic equations to determine uI, pl 

where fl and g, are coefficients of the expansion of the right-hand sides 

IL = 1 SSzp(O'(S)x_~',(I)dx, g, = - k,SS,5(0'(2)Z_3CIZ)(,)d, 

The elements .Q:,, and N,,, of the matrices of the systems are expressed by double 

(4.2) 



integrals 

AI, = $1 K,’ (5 - t) t-u, (t) x-u, (x) dt dx 

&m = 1s K,’ (x - t) t_3Cp (t) x_~C~~ (xf dt dx 
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(4.3) 

We note that the elements AltnrB~,,, with subscripts of different evenness vanish, which 
corresponds to partition of the field E(l) into even and odd parts in 5. Therefore, each of 
the systems (4.2) decomposes into two independent systems for the coefficients ai and & 
with even and odd numbers. 

In order to avoid double integrals in the representations t4.3), we turn to Fourier 
transforms of the kernels tir,'. The integrals with resnect to t and t are afterwards easilv . 
expressed in terms of Bessel functions. Consequently, the elements -41, and 
in the form of integrals of functions with a power-law decrease of the order 

infinity, over the semi-axis 

AI, = -2nV$(I + I)(m + 1)ii+m Y G,'(r)ll,,(k,?) Jm+l(-&lr)r-ldr 

Bin, = ~/,n%@-s (I + 1) I1 + 2)fZ J- 3) fm + 1) (m + 2) fm + 3) ii+m 

The convergence of the integrals (4.4) can be accelerated by extracting singular terms 

B are written 
O'TZ-") at 

(4.4) 

of the form (5 - t)'ln Ix-- t I and In/s-11, respectively, out of the kernels KS’ and 
KS'. The integrals containing the extracted terms are evaluated analytically and generate a 
five-diagonal matrix. After extraction of the singular terms, the decrease,of the integrands 
in the representation of the matrix elements of the system (4.2) is accelerated to 0 (+J). 
By extracting the next singular terms, a power-law decrease can be achieved with arbitrary 
exponent. The first step in the procedure described is utilized below to represent the 
elements. B,, and enables us to obtain a more exact estimate of the rate .of their decrease 

in subscripts. 
We will solve system (4.2) by the method of reduction. 
To justify this method we will estimate the behaviour of the elements A,, and Rnk in 

the subscripts. We consider the representation (4.4) for Aim. We divide the semi-axis into 
two parts by the point 7% T. We use the estimate Jim(t)/ g(z/2)'Vm! in the interval between 0 
and T for the Bessel function and the integrability of the kernel CS' (6 In order for the 
singularitiesnot to occur at zero after taking the Bessel function outside the integral sign, 
we will first use the recursion relationships 

J** (e) t J,,, (e) = 2 tm + 11 J,,r (2)/Z 

Consequently, we have the estimate 

In the integral of the Bessel. function between T and infinity, we estimate the units and 
take account of the decrease in the expression /GB'(z)+/<@-5 

We select the value of T from the condition for the total estimate to be a minimum, from 
which we have after some rounding-off 

I Am I G C, (h/2)’ 0 + 1) (m -k 1) ((I + 1)l (m + ql)‘” t+m) 

On the basis of Stirling's formula for the factorial, the reduced estimate means that 
the elements Aim decrease at the rate m-S near the diagonal and at the rate m-s for 

An analogous estimate performed directly for the integral representation for 
{<in. 

not satisfied. 
Bim is 

the kernel K,', 
Consequently, we first extract singular terms of the form C,ln[~--t[ 

which we expand in Gegenbauer polynomials 
from 
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The decrease in 

as was noted above, 

the integrands in the representation of B;,,,, is accelerated to 0 (z-lo), 

which enables us to obtain the following estimate of the behaviour of the 
corrections in the subscripts: 

1 B;, 1 < C, (k,/2)Vm8 (h~)-S’(~+m) 

i.e., the elements B,,,, have a weak growth on the order of m on the diagonals but decrease 
as m-= far from the diagonals. 

The infinite system is quasicompletely regular /S/ if for each row of its matrix the sums 
of the absolute values of the off-diagonal elements are finite after normalization by the 
diagonal elements and starting with a certain row number N is less than 1- e,e>O. Taking 
account of the estimates obtained for the behaviour of the elements A,,,, and B,, in the 
subscripts, it can be established that the following theorem is satisfied. 

Theorem 4. The infinite systems (4.2) are quasiregular for any finite k,. 

As we know, the method of reduction converges for quasicompletely regular systems to 
the solution of an infinite system if the finite system of N first equations is solvable. 
For large values of k, the number N becomes large and the matrices of the system (4.2) 
obviously become ill-posed. 

5. Investigation of the so2ution. The radiation pattern. After the systems (4.2) 
have been solved, the scattered field is constructed by means of (2.4), (2.6) and (4.1). We 
simplify the representation obtained for g(r). For this, we take account of (2.4) and rewrite 
(2.1) in the form of the sum of even and odd displacement field component in Y 

(5.1) 

c* = ((1 - u) tz c 1) 

After substituting (4.1) into (2.6) and evaluating the integrals we obtain Bessel func- 
tion expansions for the functions P273 

(5.2) 

It can be asserted on the basis of the smoothness of the solutions of the integral 
equations proved in Sect.3 that the coefficients al and fil in the expansions (5.2) decrease 
with number in a superpower manner /g/. Consequently, the summation limits can be replaced 
by a certain number N with the introduction of as small an error as desired. Then the field 
is expressed by a single integral of the sum of a certain finite number of components. 

The asymptotic form of the scattered field at infinity is of considerable interest. Let 
the incident field be a plane wave E(o) = exp (ik,(s cos6, -+ y sinfiO)). We introduce the polar 
coordinates z = rcos6. Y = rsine and we evaluate the integrals in (5.1) by the stationary- 
phase method. The second component in each integral makes an exponentially small contribution 
as k,r -+m, while the first form a diverging cylindrical wave 

exp (tk,r - i -$) ‘I’ (@,6,) , 

The radiation pattern 'Y is expressed in terms of Pp and Pa at the point 7 =cos%Y 

w (&,@,) = -pz (cos~)((l - o)cos2Q - 1) + (5.3) 
p3 (~09 6) ((1 - 0) ~09 13 + 1) sin 6 

Formula (5.3) is exact. It is valid for an arbitrary incident field whose characteristics 
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are contained in the functions pa and p3, determined according to (5.2) by the solutions of 
systems (4.2). 

We will investigate the asymptotic form Y as k, 40, i.e., we study scattering by a 
short crack. We replace the Bessel functions in (5.2) by the highest terms in the Taylor 
series expansion 

P3(++- 9 Br(- i)'(f: i- i)(i + 2)(1 + 3)(&r)' 
i$ 

In order to determine the order of the coefficients al and @I in ke, we will investigate 
the asymptotic form of the matrices of system (4.2). We obtain the following estimate for 
the coefficients BL,: Bi, =o(k,). A more exact asymptotic form, that can be obtained by 
investigating the expansion of the kernel KS’ in the neighbourhood of the point t =x, is 

required for Ai, 

A,, =g(30a + 2a-+-3)+U(Itr,af, Al,=0 (k,a) 

The coefficients ft and gl are calculated explicitly for the case of plane-wave incidence 
and have the asymptotic forms 

fi = -i’+‘ko%%, (u) (1 + 1) Jr+1 (k, cos 6,)/(k, cos 8,) - 
-l/~~i~lk~z~O~ (u) (t + 1) (k, cos &$ 

gz = l/~~z+lk~~ n sin 6,0, (2 - u) (I + 1) (2 + 2) (Z + 3) Jr+* (k, cos 6,)/ 
(k, cos .S# - ‘is i’+‘ko*n sin 6,0, (2 - o) (I + 1)(1 + 2) (I + 3). 

(ICQ cos6,/2)' 
BO (a) = (sina@, + u cosa6J 

Solving systems (4.21 for the highest terms of the expansions 9% and qps we obtain the 
following radiation pattern asymptotic form: 

Y (@, 6,) = vxP@ (u) 60 (CT) (i - V&m-~ (30% t_ 20 + 3) + 

iv cos 6 cos 6, + 0 (9)) i_ 2vzx-%l (2 - u) B. (2 - 

0) sin 6 sin 6, (i + 0 (v)) 

v = (k,aJ2)e, 0 (4) = (sin26 + o cosarCt) 

(5.4) 

(we have returned to dimensional quantities in (5.41). 
As we know, the effective scattering cross-section is defined as the ratio between the 

energy scattered during diffraction by an inhomogeneity, and the energy arriving per unit 
length of the incident wave front and is expressed in terms of the radiation pattern by two 
methods /2/ 

(5.5) 

Let us verify the mentioned identity, called the optical theorem. 
the expansion of y is pure imaginary and, therefore, 

The highest term in 

equality in (5.5). Therefore, 
makes no contribution to the second 

it is necessary to compare the contribution of this term to 
the first equality in (5.5) with the contribution of the real component in the next term of 
the radiation pattern expansion. Carrying out the appropriate calculations, we see that the 
optical theorem is satisfied in the highest term and the asymptotic form 

is satisfied for the scattering cross-section. 

The author is grateful to B-P. Belinskii for his interest. 
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THE BOUNDARY-LAYER METHOD IN THE FRACTURE MECHANICS OF 

COMPOSITES OF PERIODIC STRUCTURE* 

A.L. KALAMKAROV, B.A. KUDRIAVTSEV and V.Z. PARTON 

The problem of a rectilinear crack in a composite material of doubly - 
periodic structure is considered. It is assumed that the dimensions of 
the crack are considerably greater than the cell of material 
periodicity. A boundary-layer method based on the use of the asymptotic 
method of averaging periodic structures, taking additional solutions of 
boundary-layer type /l/ into account to allow the edge effect that 
occurs near the boundary of the crack outline to be considered, is 
proposed for analysing the stress field in the neighbourhood of a 
macrocrack. 

Analysis of the stress field in highly inhomogeneous (composite) 
materials with an idealized smooth macrocrack is usually performed by 
replacing the inhomogeneous composite medium by a certain homogeneous 
anisotropic medium that is equivalent to the composite material with 
respect to the average reaction. Such an approach enables the 
computation of the average stress field in the composite with a 
macrocrack to be reduced to solving elasticity theory problems for an 
anisotropic homogeneous material with a mathematical slit. If the 
material has a periodic structure (as is true of many composites), the 
average (effective) characteristics of the equivalent should be 
determined by the method of averaging periodic structures /l-3/ which 
yields an asymptotically correct approximation to the exact solution of 
the problem for the initial inhomogeneous medium. The averaging method 
here allows the local structure of the fields being investigated to be 
determined with a high degree of accuracy. This approach was used in 
/4/ to analyse the stress field near a macrocrack in laminar composites 
of periodic structure. In a number of cases formulas were obtained for 
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